先分解、再约分。分式的乘除法运算或化简应该先将能分解因式的分子、分母进行因式分解,然后再进行约分,达到计算或化简的目的。通过变形,将已知式子转化为所要求值的式子而自然地得到所求分式的值是分式求值题一个重要的解题方法。
化简求值
化简求值在数学上是一个非常重要的概念。复杂的式子,必须通过化简才能简便地求出它的值。化简是指把复杂式子化为简单式子的过程。
在分式的化简求值过程中,特别应该讲究的是化简求值过程中的方式方法、技能技巧,当然,无论是“方式方法”也好,“技能技巧”也罢,其关键还在于“基础知识”的掌握。如果“基础知识”的掌握是非常过硬的,那么在分式的化简求值过程中就能够将相关的“方式方法”、“技能技巧”运用自如,自然,在“基础知识”、“方式方法”、“技能技巧”的运用方面有了一定程度的能力的时候,如果能够再通过一定题量来进行训练的话,那么分式化简求值中的“方式方法”、“技能技巧”的运用就“如虎添翼”、“熟能生巧”,反之,一切皆为空谈。
分式的化简求值主要分为三大类
1、所给已知值是非常简单的数值,无须化简或变形,但所给的分式却是一个较复杂的式子。
2、所给已知值是一些比较复杂甚至是非常复杂的数值,但所给的分式却是一个非常简单的式子。
3、所给已知值是一些比较复杂甚至是非常复杂的数值,化简或变形后更有利于准确地求出所给分式的值,不仅如此,而且所给的分式也是一个较复杂的式子。